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One Sentence Summary: High Temperature and High Humidity Reduce the 

Transmission of COVID-19. 

 

Abstract. This paper investigates the influence of air temperature and relative humidity 

on the transmission of COVID-19. After estimating the serial interval of COVID-19 

from 105 hand-collected pairs of the virus carrier and the infected, we calculate the 

daily effective reproductive number, R, for each of all 100 Chinese cities with more 

than 40 cases. Using the daily R values from January 21 to 23, 2020 as proxies of non-

intervened transmission intensity, we find, under a linear regression framework, high 

temperature and high humidity significantly reduce the transmission of COVID-19, 

respectively. One-degree Celsius increase in temperature and one percent increase in 

relative humidity lower R by 0.0225 and 0.0158, respectively. This result is consistent 

with the fact that the high temperature and high humidity reduce the transmission of 

influenza and SARS. It indicates that the arrival of summer and rainy season in the 

northern hemisphere can effectively reduce the transmission of the COVID-19. We 

also developed a website to provide R of major cities around the world according to 

their daily temperature and relative humidity: http://covid19-report.com/#/r-value  
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Since December 2019, Wuhan, the capital of Hubei Province, China, has reported 

an outbreak of atypical pneumonia caused by COVID-19 (SARS-CoV-2 or 2019-nCov) 

(1, 2), the virus has transmitted nationwide and internationally (3-5). Compared with 

SARS, the range of the outbreak of COVID-19 is much wider. The transmission of 

coronaviruses can be affected by a number of factors, including climate conditions 

(such as temperature and humidity), population density and medical care quality (6, 7). 

Therefore, understanding the relationship between weather and the transmission of 

COVID-19 is the key to forecast the intensity and end time of this pandemic.  

Indirect evidence shows that up to March 22, 2020, 90% of COVID-19 cases have 

been recorded in non-tropical countries with low temperatures and low humidity; while 

much fewer cases are recorded in the tropics (8). However, up to now, there is no direct 

evidence on the influence of temperature and humidity on the transmission of the 

COVID-19. For example, on March 06, 2020, Michael Ryan, the executive director of 

the WHO Health Emergencies Program, said that people still did not know the activity 

or behavior of the COVID-19 virus in different climatic conditions (9). Our paper aims 

to provide direct evidence. Since the COVID-19 has spread widely to Chinese cities, 

and the intensity of transmission and weather conditions in these cities vary largely 

(Figure 1), we can, therefore, analyze the determinants of COVID-19 transmission, 

especially the weather factors. 

 

Construction of Effective Reproductive Numbers in 100 Chinese Cities 

In order to formally quantify the transmission of COVID-19, we first fit 105 

samples of serial intervals with the Weibull distribution (a distribution commonly used 

to fit the serial interval of influenza (10)). The mean and standard deviation of the serial 

interval are 7.4 and 5.2 days, respectively. With these numbers, we calculate the 

effective reproductive number, R, a quantity measuring the severity of infectiousness, 

for each of all 100 Chinese cities with more than 40 cases from the first-case date to 

February 20 by employing a time-dependent method (11). The inputs of the model are 

epidemic curves, i.e. the historical numbers of patients with symptom onset of each 

day for a certain city. 
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Because we aim to study the influences of various factors on R under natural 

conditions,1 we select our data before China’s large-scale intervention in the spread of 

COVID-19 on 24 January, when the first-level response to major public health 

emergencies in many major cities and provinces including Beijing and Shanghai are 

announced. Moreover, after the statement of person-to-person transmission from 

Professor Nanshan Zhong on the evening of January 20 through a public television 

interview, Chinese hospitals of all provinces began serious case recording of COVID-

19, we, therefore, take the daily R values from January 21 to January 23 to proxy the 

non-intervened R for each city.2  

 

Temperature, Relative Humidity and Effective Reproductive Numbers 

The WHO believes that coronavirus carriers are infectious 2 days before the onset 

of the symptoms (12), we, therefore, use three-day average temperature and relative 

humidity up to and including the day when the R-value is measured, respectively. 

Figure 1 shows the average R values from January 21 to 23 for different Chinese cities 

geographically. Compared with the southeast coast of China, cities in the northern area 

of China show relatively larger R values and lower temperatures and relative humidity. 

The scatter plots in Figure 2 illustrate two negative relations between the 3-day average 

temperature and R-value and between the 3-day average relative humidity and R-value, 

respectively.  

We then run a pooled cross-sectional regression of the daily R values of various 

cities on their 3-day average air temperature and relative humidity and control variables 

observed in 2018 including the GDP per capita, population density, number of hospital 

beds and the fraction of population over 65 in each city. We use White robust standard 

errors to adjust the t-statistics of the regression. Table 1 shows that the air temperature 

and relative humidity have a quite strong influence on R values with significance levels 

of 1% for all specifications. One-degree Celsius increase in temperature and one 

 
1If people stay at home for most of their time under the restrictions of the isolation policy, weather conditions are 

unlikely to influence the virus transmission due to no chance of contacts between people.  
2Wuhan City imposed travel restriction at 10 a.m. on January 23, but a large amount of people left Wuhan before 

10 a.m. on that day, therefore, our sample still includes January 23.  
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percent increase in relative humidity lower the R-value by 0.0225 and 0.0158, 

respectively. The control variables are not as significant as the temperature and relative 

humidity, but with expected signs. For example, cities with more hospital beds have a 

smaller transmission intensity, because the infected are treated in hospitals and hence 

unable to transmit to others.  

John Hopkins University has estimated a 5-day incubation period between 

exposure and symptoms (13), although we do not know whether the carriers are 

infectious in the whole incubation period, as a robustness check, we also use five-day 

average temperature and relative humidity up to and including the day when the R-

value is measured, and rerun the regression. The last two columns in Table 1 show that 

temperature and relative humidity still have a strong influence on R values with a 1% 

significance level, consistent with the previous regression results.  

We then run a panel regression of daily R values on 3-day average temperatures, 

relative humidity and control variables with both fixed- and random-effects models. 

Temperature and relative humidity have quite strong influences on R values, with 1% 

significant levels for both in Table 2. Note that since control variables do not change 

on a daily basis from January 21 to 23, their effects are, therefore, absorbed in the fixed 

effects dummies in the fixed-effects panel regressions. We run a Hausman test with a 

null hypothesis that the random-effects model is preferred to the fixed-effects, and get 

the test’s p-value less than 0.01, and therefore fixed-effects panel is preferred.  

 

Absolute Humidity 

Absolute humidity, the mass of water vapor per cubic meter of air, relates to both 

temperature and relative humidity. A previous work (14) shows that absolute humidity 

is a good solo variable explaining the seasonality of influenza. A significant negative 

relationship between absolute humidity and R-value is also shown in Figure 2. Panel A 

of Table 3 shows that consistent with (14), absolute humidity does out-perform the 

relative humidity (higher R2 and larger t-statistics) as a single variable in explaining 

the cross-variation of the R values.  
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We then find a better variable from the absolute and relative humidity in explaining 

the variation of R values together with temperatures by performing a Davidson-

MacKinnon Test (15). Test 1 of Panel B in Table 3 fails to accept that absolute humidity 

is better than relative humidity (t-stat of -0.2); however, Test 2 of Panel B in Table 3 

shows that relative humidity is better than the absolute humidity with a 1% significance 

level (t-statistics -4.28). Overall, the Davidson-MacKinnon test shows that the model 

with relative humidity and temperature is better than the one with absolute humidity 

and temperature in explaining R values. 

 

Worldwide COVID-19 Transmission Intensity 

Assuming that the same relationship between temperature and relative humidity 

and R values (first column in Table 1) applies to cities outside China and that the 

temperature and relative humid of 2020 are the same as those in 2019, we can draw a 

map of R values for worldwide cities in Figure 3 by plugging the average March and 

July temperatures and relative humidity of 2019. This figure cautions people of the 

transmission risk of COVID-19 worldwide, in March and July of 2020, respectively. 

As expected, the R values are larger for temperate countries and smaller for tropical 

countries in March, which is consistent with the indirect evidence mentioned 

previously (8). In July, the arrival of summer and rainy season in the northern 

hemisphere can effectively reduce the transmission of the COVID-19. 

 

Discussions 

We find the high temperature and relative humidity reduce the transmission of 

COVID-19 both with 1% significance levels. This finding is consistent with the 

evidence that high temperature and high humidity reduce the transmission of influenza 

(14, 16-19), which can be explained by two possible reasons: First, the influenza virus 

is more stable in cold temperature, and respiratory droplets, as containers of viruses, 

remain airborne longer in dry air (20, 21). Second, cold and dry weather can also 

weaken the hosts’ immunity and make them more susceptible to the virus (22, 23). 

These mechanisms are also likely to apply to the COVID-19 transmission. Our result 
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is also consistent with the evidence that high temperature and high relative humidity 

reduce the viability of SARS coronavirus (24, 25).  

Note that the R2 of our regression is about 20%, which means that 80% of R-value 

fluctuations cannot be explained by temperature and relative humidity (and controls). 

The three-day average temperatures and relative humidity in our sample range from -

21oC to 21oC and from 47 to 100, respectively, therefore it is still not known yet 

whether these negative relationships between COVID-19 transmission and temperature 

and humidity still hold in extremely hot, cold, and dry areas. In the meanwhile, 

although our paper suggests that the arrival of summer and rainy season in the northern 

hemisphere can effectively reduce the transmission of the COVID-19, it is unlikely that 

the COVID-19 pandemic diminishes by summer since the central U.S., northwest 

China and countries in the southern hemisphere (e.g. Australia and South Africa) still 

have a high coronavirus transmission as shown in Figure 3. Therefore, other measures 

such as social distancing are still important for blocking the COVID-19 transmission. 
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(a) 

 

 

(b)                                    (c) 

 

Figure 1: A city-level visualization of the COVID-19 transmission (a), 

temperature (b) and relative humidity (c).  

Average R values from January 21 to 23, 2020 for 100 Chinese cities are used in subplot 

(a). The average temperature and relative humidity for the same period are plotted in 

(b) and (c). Subplots (a), (b) and (c) together inform that the R values are larger in the 

cold and dry northern regions of China. 
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(a) Effective reproduction number R v.s. temperature 

 

(b) Effective reproduction number R v.s. relative humidity 
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(c) Effective reproduction number R v.s. absolute humidity 

Figure 2: Effective reproductive number R v.s. temperature, relative humidity 

and absolute humidity for 100 Chinese cities 

Daily R values from January 21 to 23 and temperature, relative humidity and absolute 

humidity averaged 3 days up to and including the day of R measurement are used in 

this figure. Negative relationships between temperature and R, relative humidity and R 

and absolute humidity and R are shown in (a), (b) and (c), respectively.  
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(a) R values in March 

 

(b) R values in July 

Figure 3: Worldwide risks of COVID-19 outbreak in March and July 2020  

We use coefficients from the first column of Table 1 to estimate R values of worldwide 

cities (represented by dots) for March and July 2020, where temperatures and relative 

humidity in 2019 are obtained from https://www.ncdc.noaa.gov/ and assumed to be the 

same as those of 2020. 
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Table 1: Cross-sectional regression analysis 

Daily R values from January 21 to 23 and temperature and relative humidity averaged 

over 3 and 5 days, respectively, up to and including the day when R is measured, are 

used in the regression for 100 Chinese cities with more than 40 cases. The regression 

is estimated by an Ordinary Least Square (OLS) method with White robust standard 

errors to adjust heteroskedasticity. T-statistics are in the italic format with *, ** and 

*** representing significance at the 10%, 5% and 1% levels, respectively. 

 3-day average 3-day average 5-day average 5-day average 

Temperature -0.0233 -0.0225 -0.0269 -0.0271 

t-statistics -3.96*** -3.23*** -4.33*** -3.75*** 

Relative Humidity -0.0133 -0.0158 -0.00954 -0.0122 

t-statistics -5.17*** -5.66*** -2.80*** -3.29*** 

GDP per Capita  -0.0171  -0.0158 

t-statistics  -1.93*  -1.71* 

Population Density  0.0821  0.0769 

t-statistics  1.93*  1.82* 

No. hospital beds  -0.00246  -0.00205 

t-statistics  -2.43**  -1.91* 

Percentage over 65  0.357  -0.191 

t-statistics  0.19  -0.10 

const 3.011 3.298 2.709 3.061 

t-statistics 14.06*** 10.38*** 9.80*** 8.16*** 

R2 18% 21% 14% 17% 
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Table 2: Panel regression analysis 

Daily R values from January 21 to 23 and temperature and relative humidity averaged 

over 3 and 5 days, respectively, up to and including the day when R is measured, are 

used in the regression for 100 Chinese cities with more than 40 cases. Fixed and 

random effects models are both performed with White robust standard errors to adjust 

heteroskedasticity. T-statistics are in the italic format with *, ** and *** representing 

significance at the 10%, 5% and 1% levels, respectively. 

 3-day average 

fixed effects 

3-day average 

random effects 

5-day average 

fixed effects 

5-day average 

random effects 

Temperature -0.0928 -0.0419 -0.204 -0.0553 

t-statistics -6.48*** -4.44** -7.75*** -4.52*** 

Relative Humidity -0.0302 -0.0288 -0.0334 -0.0280 

t-statistics -10.01*** -10.23*** -3.16*** -4.73*** 

GDP per Capita  -0.0102  -0.00761 

t-statistics  -0.67  -0.49 

Population Density  0.120  0.120 

t-statistics  1.49  1.54 

No. hospital beds  -0.00481  -0.00443 

t-statistics  -2.55**  -2.02** 

Percentage over 65  -0.120  -1.664 

t-statistics  -0.04  -0.54 

const 4.758 4.517 5.478 4.608 

t-statistics 21.08*** 9.43*** 7.28*** 7.00*** 

R2 17% 21% 14% 16% 
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Table 3: Absolute humidity as an explanatory variable 

Panel A of Table 3 shows the explanatory power of the absolute humidity compared 

with the relative humidity. Panel B finds a better one in absolute and relative humidity 

in explaining the variation of R values together with temperatures via a Davidson-

MacKinnon Test. To run a Davidson-MacKinnon test, we first perform Test 1: 

𝑅 = 𝑐𝑜𝑛𝑠𝑡 + 𝑏 ∗ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑐 ∗ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝑢 

After obtaining the fitted R-value 𝑅̂, we run: 

𝑅 = 𝑐𝑜𝑛𝑠𝑡 + 𝑎 ∗ 𝑅̂ + 𝑏 ∗ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑐 ∗ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝑢 

Similarly, for Test 2 we first run 

𝑅 = 𝑐𝑜𝑛𝑠𝑡 + 𝑏 ∗ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑐 ∗ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝑢 

After obtaining the fitted R-value 𝑅̌, we run: 

𝑅 = 𝑐𝑜𝑛𝑠𝑡 + 𝑎 ∗ 𝑅̌ + 𝑏 ∗ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑐 ∗ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝑢 

T-statistics are in the italic format with *, ** and *** representing significance at the 

10%, 5% and 1% levels, respectively. 

 

Panel A: Absolute humidity or relative humidity in a uni-variable regression 

 3-day average  3-day average  5-day average  5-day average  

Relative Humidity  -0.0164  -0.130 

t-statistics  -5.64***  -3.38*** 

Absolute Humidity -0.0704  -0.0786  

t-statistics -5.39***  -5.05***  

const 2.268 3.116 2.284 2.841 

t-statistics 24.59*** 12.98*** 22.54*** 9.17*** 

R2 13% 10% 12% 4% 
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Panel B: The Davidson-MacKinnon test 

 Test 1 Test 2 

𝑹̂ 1.127  

t-statistics 4.28***  

𝑹̌  -0.356 

t-statistics  -0.74 

Temperature -0.00531 -0.0322 

t-statistics -0.50 -2.26** 

Absolute Humidity 0.0270  

t-statistics 0.74  

Relative Humidity  -0.0178 

t-statistics  -4.28*** 

GDP per Capita 0.00133 -0.0217 

t-statistics 0.13 -1.82* 

Population Density -0.0146 0.109 

t-statistics -0.30 1.94* 

Number of hospital beds 0.000306 -0.00305 

t-statistics 0.24 -2.08** 

Rate of people over 65 0.601 0.0943 

t-statistics 0.30 0.05 

const -0.448 4.228 

t-statistics -0.57 3.24*** 

R2 21% 21% 
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Materials and Methods 

Data  

We hand-collect 4,711 cases from the epidemiological survey data available 

online published by the Center for Disease Control and Prevention of 11 provinces 

and municipalities including Beijing, Shanghai, Jilin, Sichuan, Hebei, Henan, Hunan, 

Guizhou, Chongqing, Hainan and Tianjin. By analyzing the records of each patient’s 

contact history with other patients, we match 209 close contacts. Among them, if a 

group of patients travel (e.g. go to Wuhan) together, we hence cannot distinguish 

between the carrier and the infected, and, therefore, remove such samples from the 

data. We finally screen out 105 pairs of virus carriers and the infected, which are used 

to estimate serial intervals of COVID-19. We also construct epidemic curves for all 

100 Chinese cities with more than 40 cases from their first-case dates to February 20, 

which are constructed using more than 70,000 cases. The epidemic curves are used to 

estimate the daily effective reproductive number, R, for different cities. 

Temperature and relative humidity data are obtained from 699 meteorological 

stations in China from http://data.cma.cn/. If a city does not have a meteorological 

station inside it, the closest station is used instead. Population density, GDP per 

capita, number of hospital beds and the fraction of the population over 65 years old in 

2018 for different cities are obtained from https://data.cnki.net.  

 

Distribution of the serial interval  

The serial interval, defined as the time span between symptom onset dates of a 

primary case to a successive case, is calculated based on the 105 samples of the 

carrier and the infected. Specifically, we fit the Weibull distribution (2, 3) using the 

Maximum Likelihood Estimation (MLE) method1 and obtain the parameters of the 

mean and standard deviation of 7.4 and 5.2 days, respectively, which are consistent 

with the preliminary estimation (4) using 10 cases (7.5 days average with 95% 

 
1 We fitted the Weibull distribution by Python package ’Scipy’ and R package ’MASS’, which can be found at 

https://www.scipy.org/ and https://cran.r-project.org/web/packages/MASS/index.html. The two results are 

consistent to each other. 
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confidence interval of 5.3 to 19). Compared to SARS (3), the COVID-19’s serial 

interval has a smaller average but a larger standard deviation. The fitted Weibull 

distribution is shown in Figure S1.  

 

Estimation of the effective reproductive number 

We estimate the daily effective reproductive number, R, for 100 cities with more 

than 40 cases from the first-case date to February 20 by employing a time-dependent 

method (5). The inputs of the model are epidemic curves, i.e. the historical numbers 

of patients with symptom onset of each day for a certain city. We estimate the daily R 

values using a package ’R0’ (6). In this package, we particularly use a function 

named ’est.R0.TD’ in our estimation. We use the daily R values from January 21 to 

23, 2020 for each city in this paper. The average R-value of these 100 cities is 1.83 

with the minimum and maximum values of 0.81 and 4.61, respectively. Table S1 

provides summary statistics of the variables used in this paper.  

 

Robustness Checks 

Among these 100 cities, Wuhan is a special sample because of the double 

standards for the confirmation of cases. For example, there was a sudden increase of 

more than 13,000 cases in a single day (February 12, 2020) in Wuhan, and the 

majority of them were previously left unable to seek medical treatment. Therefore, as 

a robustness check, we remove Wuhan city in our sample and redo both the 

cross-sectional and panel regressions. The results of robustness checks, presented in 

Table S2, are consistent with those in Table 1 and 2. All regressions are performed 

with the econometrics software Stata. 

It might be some outliers in the sample that can influence the estimation of the 

coefficients. We, therefore, bootstrap the sample for 1000 times; in each iteration, we 

rerun the regression and obtain the coefficients. The percentile values for each 

coefficient are shown in Table S3. If the regression coefficients are mainly caused by 

one outlier (i.e. an extreme R-value), in cases where the outlier is not sampled (about 

37% probability (7)), the regression coefficients will be quite different, and the 
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distribution of the coefficients will be highly skewed. However, in Table S3, the 

mean and median of the bootstrapped coefficients are quite similar, which means the 

coefficient distribution is not skilled. Furthermore, the 99% percentiles for 

temperature and relative humidity are still negative. All of these show that our results 

are robust with outliers. 

 

  

Electronic copy available at: https://ssrn.com/abstract=3551767



5 
 

 

 

Figure S1: Estimation of the serial interval with the Weibull distribution 

Bars denote the probability of occurrences in specified bins, and the red curve is the 

density function of the estimated Weibull distribution.  
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Table S1: Data Summary 

This table summarizes variables for 100 cities: the daily R values from January 

21 to 23, 3-day and 5-day average temperature and relative humidity, and the GDP 

per capita, the population density, number of hospital beds and the fraction of people 

over 65 years old in 2018. 

 Mean Std   Min Max 

R 1.831 0.522 0.813 4.609 

3-Day Average Temperature (Celsius) 6.017 6.549 -20.833 21.033 

3-Day Average Relative Humidity (%) 78.456 9.898 46.667 100.0 

5-Day Average Temperature (Celsius) 5.172 6.368 -20.780 18.52 

5-Day Average Relative Humidity (%) 77.541 7.764 49.000 91.800 

GDP per Capita (RMB 10k) 6.800 3.721 2.159 18.957 

Population Density (k/km2) 0.692 0.813 0.00800 6.522 

No. of Hospital Beds (k) 30.785 26.790 2.232 162.100 

Fraction over 65 0.121 0.0186 0.0826 0.152 
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Table S2: Relationship between Temperature, relative humidity, and effective 

reproductive number for samples without Wuhan 

The table reports the linear regression coefficients of the effective reproductive 

number, R, on an intercept, temperature, relative humidity and control variables for 

samples without Wuhan. Both cross-sectional and panel regressions in Tables 1 and 2 

are re-performed. T-statistics are in the italic format with *, ** and *** representing 

significance at the 10%, 5% and 1% levels, respectively. 

 

 
3-day average 

3-day average Panel 

Fixed Effects 

3-day average Panel 

Random Effects 

Temperature -0.0223 -0.0928 -0.0416 

t-statistics -3.19*** -6.46*** -4.41** 

Relative 

Humidity 
-0.0159 -0.0302 -0.0289 

t-statistics -5.56*** -9.98*** -10.16*** 

GDP per 

Capita 
-0.0178  -0.0113 

t-statistics -1.96*  -0.73 

Population 

Density 
0.0828  0.121 

t-statistics 1.95*  1.51 

Number of 

hospital beds 
-0.00253  0.00491 

t-statistics -2.45**  -2.54** 

Rate of people 

over 65 
0.368  -0.124 

t-statistics 0.20  -0.04 

const 3.314 4.759 4.527 

t-statistics 10.25*** 20.99*** 9.41*** 

R2 21% 17% 21% 
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Table S3: A bootstrapping analysis 

The table reports the bootstrapping results for the linear regression of the effective reproductive number, R, on an intercept, temperature, 

relative humidity and control variables for 1000 times. The exact values of the regression coefficients are reported at various percentiles.   

 

Percentiles Mean 1% 2.5% 5% 25% 50% 75% 95% 97.5% 99% 

Temperature -0.0232 -0.0403 -0.0379 -0.0351 -0.0276 -0.0229 -0.0185 -0.0120 -0.0100 -0.0072 

Relative Humidity -0.0159 -0.0227 -0.0213 -0.0207 -0.0177 -0.0158 -0.0139 -0.0112 -0.0105 -0.0099 

GDP per capita -0.0174 -0.0388 -0.0348 -0.0323 -0.0237 -0.0173 -0.0112 -0.0030 -0.0007 0.0014 

Population Density 0.0883 -0.0082 0.0079 0.0205 0.0553 0.0831 0.1168 0.1704 0.1885 0.2150 

No. Hospital Beds  -0.0025 -0.0052 -0.0048 -0.0044 -0.0032 -0.0025 -0.0018 -0.0009 -0.0005 -0.0002 

Fraction over 65 0.2531 -3.6479 -3.2140 -2.6845 -0.9650 0.1780 1.4404 3.2955 3.9977 4.7850 

Const 3.3234 2.6102 2.7054 2.8077 3.1030 3.3139 3.5364 3.8428 3.9651 4.0526 
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